Chemistry Summer Seminar, Summer 2024

Closed-loop and Autonomous: CMU Cloud Lab for Measuring Hansen Solubility Parameters

Symbolic Lab Language (SLL) Is Open Source

The world's most robust and feature-rich computational language for remotely conducting experiments in a cloud lab is available to all.

Sijie Fu Thursday, June 27, 2024

Washburn Group @ CMU

- · Refined for 13 years
- 600.000+ experimental methods
- Works with 230+ types of instruments.
- · Used to process nearly 1.5 million samples
- 15.000+ unique field definitions
- · 3,900+ scientific functions

covestro

Carnegie Mellon University

Cloud Lab

C Emerald Cloud Lab

Carnegie Mellon University

Outline

Basics of the CMU cloud lab

PCR **GC HPLC** remote access materials science chemistry NMR robotics 200+ scientific instruments **FPLC** automated science world's 1st academic cloud lab 24/7/365 in vitro biology accessible, reproducible & efficient life sciences

```
intro 1
```

Symbolic Lab Language (SLL)

the "heart" of the cloud lab

A code snippet to make a 5% NaCl solution in the cloud lab

intro 1

SLL is all you need (?)

ExperimentSamplePreparation

ExperimentDNASynthesis

•••

1 (* A code snippet to make a 5% NaCl solution in the cloud lab *)
2 ExperimentSamplePreparation[
3 {
4 LabelContainer[
5 Label -> "ChemSeminar: 5% NaCl",
6 Container -> Model[Container, Vessel, VolumetricFlask, "100 mL Glass Volumetric Flask"]
7],
8 Transfer[
9 Source -> Model[Sample, "Sodium Chloride"],
10 Destination -> "ChemSeminar: 5% NaCl",
11 Amount -> (5 * Gram)
12],
13 FillToVolume[
14 Sample -> "ChemSeminar: 5% NaCl",
15 TotalVolume -> (100 * Milliliter),
16 Solvent -> Model[Sample, "Milli-Q water"]
17]
18 }
19]

ExperimentTotalProteinDetection

ExperimentHPLC

ExperimentNMR

ExperimentMeasureViscosity

and more...

Hansen solubility parameters (HSPs)

like dissolves like | like seeks like

intro 2

every material can be represented with a set of $(\delta D, \delta P, \delta H)$ coordinates in the Hansen space

$$\begin{split} R_a^2 &= 4(\delta D_1 - \delta D_2)^2 + (\delta P_1 - \delta P_2)^2 + (\delta H_1 - \delta H_2)^2 \\ Relative \ energy \ difference: \ RED &= \frac{R_a}{R_o} \\ RED &< 1.0: \ miscible; \ RED > 1.0: \ immiscible \end{split}$$

every material has a "miscible" sphere

6

the Hansen space

Hansen Solubility Parameters | Hansen Solubility Parameters (hansen-solubility.com)

Bapat, S.; O. Kilian, S.; Wiggers, H.; Segets, D. Towards a Framework for Evaluating and Reporting Hansen Solubility Parameters: Applications to Particle Dispersions. *Nanoscale Advances* **2021**, 3 (15), 4400–4410.

HSP application: solvent optimization

 δD : Dispersion

7

Bapat, S.; O. Kilian, S.; Wiggers, H.; Segets, D. Towards a Framework for Evaluating and Reporting Hansen Solubility Parameters: Applications to Particle Dispersions. *Nanoscale Advances* **2021**, *3* (15), 4400–4410.

How to assign HSPs?

 δP : Polarity (dipole moment)

δH: Hydrogen bonding

theoretical molecular simulation

✓ alkanes should have a δP of 0 ✓ water should have a high δH ✓ ...

but what about polymers and nanoparticles?

HSPs: experimental measurement

where molecular simulations fail to deliver, e.g., polymers

every material has a *"miscible" sphere*

Solvents	dD	dP	dH	MVol	Score
Acetonitrile	15.3	18	6.1	52.9	0
Benzene	18.4	0	2	52.9	0
Cyclohexane	16.8	0	0.2	108.9	0
Diethyl Ether	14.5	2.9	4.6	104.7	0
1,4-Dioxane	17.5	1.8	9	85.7	0
Ethanol	15.8	8.8	19.4	58.6	0
Hexane	14.9	0	0	131.4	0
Iso-Propyl Ether	15.1	3.2	3.2	141.8	0
Methanol	14.7	12.3	22.3	40.6	0
Toluene	18	1.4	2	106.6	0
Xylene	17.6	1	3.1	123.9	0
Acetone	15.5	10.4	7	73.8	1
Chloroform	17.8	3.1	5.7	80.5	1
m-Cresol	18.5	6.5	13.7	105	1
Dimethyl Sulfoxide (DMSO)	18.4	16.4	10.2	71.3	1
1,3-Dioxolane	18.1	6.6	9.3	69.9	1
Ethyl Acetate	15.8	5.3	7.2	98.6	1
Methyl Ethyl Ketone (MEK)	16	9	5.1	90.2	1
N-Methyl-2-Pyrrolidone (NMP)	18	12.3	7.2	96.6	1
Methylene Chloride	17	7.3	7.1	64.4	1
N,N-Dimethyl Formamide (DMF)	17.4	13.7	11.3	77.4	1
Tetrahydrofuran (THF)	16.8	5.7	8	81.9	1

Hansen Solubility Parameters | Hansen Solubility Parameters (hansen-solubility.com)

Why the cloud lab?

Experiments wisely!

similar solvents tend to give similar miscibility

Goal

Efficiently determine the *"miscible" sphere* for the test material(s) with the least number of experiments (solvents)

efficiently plan our experiment road map (updated every time a new result is acquired)

aim

remotely execute the experiment protocols and provide findings

 \rightarrow Arrows represent the direction of information flow.

The closed-loop cloud lab workflow

the experiment execution module + result collection

The two major cloud lab protocols

Preliminary runs in the CMU cloud lab

5 solvents 1 test resin

method 1

Computer vision (CV) for interface detection

Keep in mind that computers have no visual sensations – they only "see" numbers.

Step 1: Find vial(s) & crop image Step 2: Locate interface(s) & make a conclusion

Object detection

Step 1: Find vial(s) & crop image

VisDrone-VDT2018: The Vision Meets Drone Video Detection and Tracking Challenge Results: Munich, Germany, September 8-14, 2018, Proceedings, Part V. 10.1007/978-3-030-11021-5_29.

Object detection: a common CV task

Step 1: Find vial(s) & crop image

Original video: <u>Camilo Calderón - Photography (pexels.com)</u> Annotated gif: <u>Enhanced Object Detection: How To Effectively Implement YOLOv8 | by Thomas A Dorfer | Towards Data Science</u>

Vial detection by YOLOv10n

You Only Look Once (YOLO)

Vial detection demo

- 1. Find images with vials and label them;
- 2. Use pretrained YOLOv10n weights and *fine-tune* the model for vial detection.

YOLOv10 - Ultralytics YOLO Docs

• Wang, A.; Chen, H.; Liu, L.; Chen, K.; Lin, Z.; Han, J.; Ding, G. YOLOv10: Real-Time End-to-End Object Detection. arXiv May 23, 2024.

Interface detection

N

Look for interface(s) & make a conclusion

Sadly to the best of my knowledge, *AI may not be the best option* for such a nuanced/transparent task here, especially with the *lack of training data*.

"ab initio" image analysis edge detection

method 2 Edge detection for interface detection

just one simple trick made everything so much clearer!

method 2 **Noise reduction, background cancelation, label correction...**

Looking for a live demo? Click the link on the left and log in. Pick any image from <u>this search result</u>, click on it, and then right click to "copy image link" (not the link for the whole page). Paste the image link to the webapp and have fun exploring.

Vial detection + interface detection

benchmarking

tests

method 2

and more improvements are on the way...

Interface detection in live action

green box: miscible red box: immiscible blue line: cap cyan line: interface

0.96

method 3 A Bayesian approach for planning experiments

miscible solventimmiscible solvent

solvent selection for efficient experimentation **Principle:** always prioritize experiments with *higher*

uncertainties to maximize the information gain.

helps sketch the decision boundary

when there is *limited* knowledge, explore the regions that are *less explored*

helps refine the decision boundary

when there is *adequate* knowledge, explore around the estimated *decision boundary*

demo

Putting everything together

how does one closed-loop test look like?

Chemistry Summer Seminar Demo

https://washburnlab.chem.cmu.edu/HSP/

https://washburnlab.chem.cmu.edu/chem-seminar-demo/

Acknowledgements

ECL

Carnegie Mellon University Cloud Lab

all of you and more!

Closed-loop and Autonomous: CMU Cloud Lab for Measuring Hansen Solubility Parameters

Chemistry Summer Seminar, Summer 2024

Thank you for your attention! Happy to take any questions.

Washburn Group @ CMU *Sijie Fu* Thursday, June 27, 2024

